

2.5A USB/Adapter Switching Charger

General Description

The VAS5183 is a highly-integrated switch-mode battery charge management device for 1 cell Li-Ion and Li-polymer batteries in a wide range of tablet and other portable devices. Its low impedance power switch optimizes switch-mode operation efficiency, reduces battery charging time and heat. The VAS5183 supports a wide range of input sources, including standard USB host port, USB charging port, and high power DC adapter. It is compliant with USB 2.0 and USB 3.0 power spec with both input current limit and input voltage regulation to manage max input power without input source crash. The VAS5183 offers adjustable battery cell voltage that can fit various battery cells from different manufacturers, and the programmable safety timer can satisfy a wide range of battery capacity with different kinds of charging rate.

The VAS5183 features high integration with all power switches included inside. No external MOSFET, blocking diodes, or current sense resistor is required. The application circuit needs only few external resistors and MLCC capacitors for operation.

VAS5183 is available in QFN 4mmx4mm package.

Applications

- Power Bank
- Tablet PC
- Smart phone
- Portable Hand-held solutions

Features

- Integrated power MOSFETs
- 4.5~6.0V operating input voltage
- 20V input rating (surge protection)
- Programmable up to 2.5A charge current(set by ext. RISET resistor)
- Up to 92% efficiency
- Cover USB2.0 and USB3.0 input specification
- Programmable output voltage (4.20V to 4.4V) with ±1% accuracy
- Automatically reduce charge current when supplied by poor power source (VIN-DPM)
- Does not required reverse blocking diode or MOS
- No sense resistor required
- Fault indicator
- $\pm 10\%$ charge current accuracy
- 1.5MHz operating frequency to minimize external components size
- Protections:
 - VIN 6.6V OVP protection (stop switching)
 - Programmable safety timer(3~20 hours)
 - Thermal regulation / OTP shutdown
 - Cell temperature qualification

Typical Application Circuits

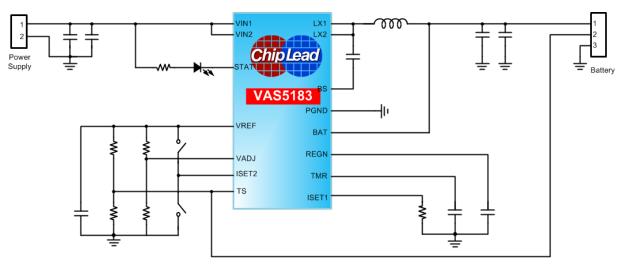
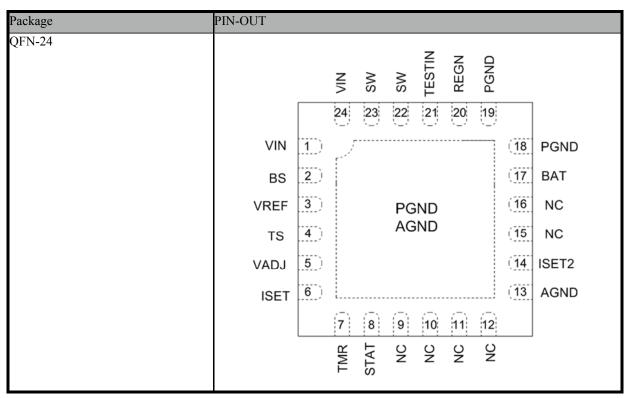
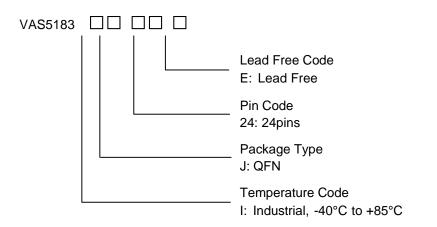



Figure1. Typical Application Schematic

PIN Configuration

PIN Description


PIN NO.	Name	Description			
1, 24	VIN	IC power supply of power device of Charger. Put 10uF MLCC from VIN to PGND.			
2	BS	Boostrap pin. Place a	47-nF MLCC from SW to BS	6	
3	VREF	3.3V reference output stable.	A 1uF MLCC is placed from	n VREF to GND to make it	
4	TS	NTC resistor connecti	on. Cell temperature qualific	ation input pin.	
5	VADJ	Set VADJ voltage bet (4.2~4.4V).	ween 0V~VREF to adjust ch	arge regulation voltage	
6	ISET	Fast charge current se	et pin.		
7	TMR	Connect a capacitor fi (5.6min/1nF)	rom this node to AGND to se	et the fast charge safety timer.	
8	STAT	Open drain output			
		Hi-Z	Low	Blinking	
		Charge complete or Sleep mode	Charging in progress	Fault	
9,10, 11,12	NC	No connection.			
13	AGND	Analog Ground.			
14	ISET2	Programming the charge current limit for the USB or adapter source: High=1A(USB3.0), Low=0.5A(USB2.0), FLOAT=ISET(User define).			
15,16	NC	No connection.			
17	BAT	Charger voltage regulation sense input.			
18,19	PGND	Power ground.			
20	REGN	5V power supply output, Bypass 1u-F MLCC to AGND.			
22	TESTIN	Test input, keep no connection during normal operation.			
22, 23	LX	Switching node, charge current output inductor connection. Connect a 47-nF BS capacitor from LX to BS.			

Order Information

Order Number	Package Type	QTY/Reel	Green Status	Operation temp range
VAS5183IJ24E	QFN24	2500	RoHS	-40 °C to 85°C

Absolute Maximum Ratings

Parameters	Maximum Ratings
VIN, BS, STAT	-0.3V to 20V
LX	-2V to 7V
REGN, TMR, BAT, ISET, ISET2	-0.3V to 7V
VREF, VADJ, TS	-0.3V to 3.6V
PGND	-0.3V to +0.3V
Junction temperature range	-40°C to +150°C
Storage temperature range	-65°C to +150°C
Lead Temperature	260°C
Maximum Power Dissipation	2W
ESD (HBM)	2000V

Electrical Characteristics

PARAMETERS		TEST CONDITIONS	MIN	ТҮР	MAX	UNITS
OPERATING	CONDITIONS					
V_{VIN_OP}	VIN input voltage operating range during charging.		4.5		6	V
QUIESCENT	CURRENT					
I _{IN}	Adapter supply current	VIN=5V		1.5	2	mA
I _{BAT}	Battery discharge current	VBAT=4.2V, standby mode		15	30	μΑ
CHARGE VC	DLTAGE REGULATIO	N		1	1	
V _{BAT_REG}	BAT regulation voltage	Measured on BAT		4.2		V
	Charge voltage regulation accuracy	$TJ = -20^{\circ}C$ to $85^{\circ}C$	-1%		1%	
V_{VADJ}	VADJ voltage range		0		VREF	V
	Regulation voltage	VADJ=0V,		4.2		V
V_{BAT_ADJ}	Adjustment	VADJ=1/2*VREF		4.3		V
CUDDENTED		VADJ=VREF		4.41		V
I _{CHG}	EGULATION Fast charge current	Programmable Mode(Max)		2.0	2.5	А
V _{ISET}	Fast charge current reference voltage			1.0		V
	Output "fast charge" formula	$\begin{array}{l} V_{BAT_REG} > V_{BAT} > \\ V_{LOWV}; ISET2 = FLOAT \\ RISET = 30k\Omega \text{ to } 200k\Omega \end{array}$		KISET/ RISET		А
K _{ISET}	Fast charge current factor	$RISET = K_{ISET} / IOUT;$ 500 <iout< 2500ma<="" td=""><td>75</td><td>80</td><td>85</td><td>AkΩ</td></iout<>	75	80	85	AkΩ
CURRENT R	EGULATION -PRE- C	CHARGE			•	
%PRECHG	Pre-charge current, default setting	$V_{BAT} < V_{LOWV}$		10		% _{IOUT-CC}
CHARGE TE	RMINATION			1	1	
% _{TERM}	Termination threshold current, default setting	$V_{BAT} > V_{RECHG}$	5	10	15	%IOUT-CC
t _{TERM_DEG}	Deglitch time termination (both edges)	V_{BAT} > V_{RECHG} and I_{CHG} < I_{TERM}		100		ms
BAT LOWV COMPARATOR						
V_{LOWV}	Precharge to fast charge transition threshold	Measured on BAT	2.85	2.9	2.95	V
RECHARGE COMPARATOR						
V _{RECHG}	Recharge threshold, below regulation voltage limit, V _{BAT REG} -V _{BAT}	Measured on BAT	70	100	130	mV

PAR	AMETERS	TEST CONDITIONS	MIN	ТҮР	MAX	UNITS
BAT OVER-V	OLTAGE COMPARA	TOR				
V_{OV_RISE}	Battery over-voltage rising threshold	As percentage of V_{BAT_REG}		110		%
V_{OV_FALL}	Battery over-voltage falling threshold	As percentage of V_{BAT_REG}		105		%
INPUT OVER	-VOLTAGE COMPAI	RATOR (ACOV)				
V _{ACOV}	AC over-voltage rising threshold to disable charge	VIN rising	6.4	6.6	6.8	V
V_{ACOV_HYS}	AC over-voltage falling hysteresis	VIN falling		300		mV
Input Under-V	oltage Lock-Out Com	parator (UVLO)			1	
V _{UVLO}	AC under-voltage rising	Measure on VIN		3.3		V
$V_{\rm UVLO-HSY}$	AC under-voltage hysteresis	Measure on VIN		300		mV
THERMAL R		1				
T_{J_REG}	Junction temperature regulation	Charging		125		°C
THERMAL SH	HUTDOWN COMPAR	ATOR				
T _{SHUT}	Thermal shutdown temperature	Temperature rising		155		°C
THERMISTO	R COMPARATOR				-	
V_{LTF}	Cold temperature threshold, TS pin voltage rising threshold	Charger suspends charge. As percentage to V_{VREF}	72.5	73.5	74.5	%
V_{LTF_HYS}	Cold temperature hysteresis, TS pin voltage falling threshold	As percentage to V_{VREF}	0.2	0.4	0.6	%
V _{HTF}	Hot temperature TS pin voltage falling threshold	As percentage to V_{VREF}	46.6	47.2	48.8	%
V _{TCO}	Cut-off temperature TS pin voltage falling threshold	As percentage to V_{VREF}	44.2	44.7	45.2	%
VREF REGUI		·		•	•	
V _{VREF}	REF regulator voltage	V _{VIN} > V _{UVLO} , No load	3.15	3.3	3.45	V
I _{VREF_LIM}	REF current limit	$\begin{array}{l} V_{\text{VREF}} = 0 \ V, \ V_{\text{VIN}} > \\ V_{\text{UVLO}} \end{array}$		40		mA
REGN REGU						
V_{REGN_REG}	REGN regulator voltage	$V_{VIN} > 10 V$	4.3	4.6	4.9	V
I _{REGN_LIM}	REGN current limit	$V_{\text{REGN}} = 0 \text{ V}, V_{\text{VIN}} > 10 \text{ V}$		50		mA
INTERNAL PWM						
Fsw_ _{CHG}	PWM Switching Frequency	Measure at LX	1200	1400	1600	kHz

PARAMETERS		TEST CONDITIONS	MIN	ТҮР	MAX	UNITS
R _{DS_HI}	High Side MOSFET On Resistance			80	120	mΩ
R _{DS_LO}	Low Side MOSFET On Resistance			40	60	mΩ
R _{DS_BD}	Block MOSFET On Resistance			50	70	mΩ
SAFETY TIM	SAFETY TIMER					
T _{PRE-CHARGE}	Pre-charge timer		1848	2100	2352	Sec
T _{FAST-CHARGE}	Fast-charge timer	T _{CHG} =C _{TMR} *K _{TMR}	1		15	hr
K _{TMR}	Timer Multiplier			5.6		min/nF

Application Information

1. Typical Operation Theory

The charger of VAS5183 is optimized for charging 1-cell Li-ion or Li-polymer batteries. It charges a battery with constant current (CC) and constant voltage (CV) profile. In CV mode, if charge current reaches 1/10 constant current threshold, the STAT pin turn off and indicate end-of-charge. The typical charge profile is illustrated as below.

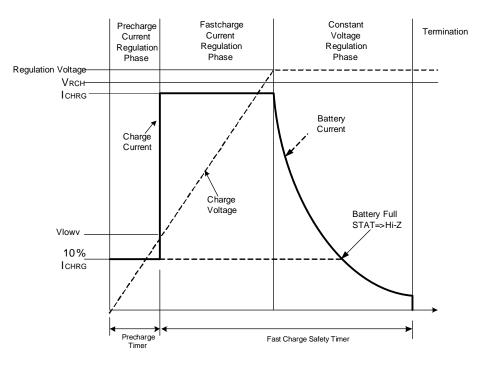


Figure2. Typical Charging Profile

2. Battery Voltage Regulation

The VAS5183 offers a high accuracy voltage regulator for the charging voltage. Battery regulation voltage could be adjusted by setting VADJ voltage and the equation for the adjustment is:

Value Added Solutions

VAS5183

$$V_{BAT_REG} = \left[\left(\frac{V_{ADJ}}{V_{REF} \cdot 20} + 1 \right) \times 4.2 \right]$$

3. Battery Current Regulation

The ISET input sets the maximum charging current. The equation for charge current is:

400-833-7266 0755-82542116 原厂授权

中国代理

$$I_{CHG} = \frac{1}{R_{ISET}} \times 80K$$

Give a $40k\Omega$ RISET to set 2A charge current, for instance. Under high ambient temperature, the charge current will fold back to keep IC temperature not exceeding 125°C.

4. USB2.0 and USB3.0 Charge

The charge current limit can be programmed to 500mA and 1A via the ISET2 logic pins to cover the USB2.0 and USB3.0, set ISET2 to high for 1A and low for 0.5A charging current.

5. Battery Pre-charge Current Regulation

If the battery voltage is below the VLOWV threshold, the VAS5183 applies the pre-charge current to the battery. This pre-charge feature is intended to revive deeply discharged cells. If the VLOWV threshold is not reached within 30 minutes of initiating pre-charge, the charger turns off and a FAULT is indicated on the status pins.

For VAS5183, the pre-charge current is set as 10% of the fast charge rate.

6. Input Over Voltage Protection

Input OVP provides protection to prevent device damage due to high input voltage. The threshold of input OVP is 6.6V typ., once input above threshold, the charger is disabled and STAT indicated FAULT.

7. Input Voltage Regulation

The input voltage can be limited in order to avoid overloading of DC adapter or USB power source, when the voltage on VIN pin drops and hits the threshold voltage of 4.7V, the charging current will be decreased and input voltage will be clamped to this value.

8. Charge Termination

The charger monitors the charging current during the voltage regulation phase. Termination is detected when the charge taper down to 1/10 of the fast charge rate.

9. Re-Charge

A new charge cycle is initiated when one of the following conditions occurs:

- The battery voltage falls below the recharge threshold
- A power-on-reset (POR) event occurs
- 10. Safety Timers

As a safety backup, the charger also provides an internal fixed 35 minutes pre-charge safety timer and programmable fast charge timer according to the capacitor value which connected to TMR pin.

11. Soft-Start Charger Current

The charger automatically soft-starts the charger regulation current every time the charger goes into fast-charge to ensure there is no overshoot or stress on the output capacitors or the power converter.

12. Temperature Qualification

The controller continuously monitors battery temperature by measuring the voltage between the TS pin and AGND. A negative temperature coefficient thermistor (NTC) and an external voltage divider typically develop this voltage. The controller compares this voltage against its internal thresholds to determine if charging is allowed. To initiate a charge cycle, the battery temperature must be within the VLTF to VHTF thresholds. If battery temperature is outside of this range, the controller suspends charge and waits until the battery temperature is within the VLTF to VHTF range. During the charge cycle the battery temperature must be within the VLTF to VTCO thresholds. If battery temperature is outside of this range, the controller suspends charge and waits until the battery temperature is within the VLTF to VTCO thresholds. If battery temperature is within the VLTF to VTTF to VTTF.

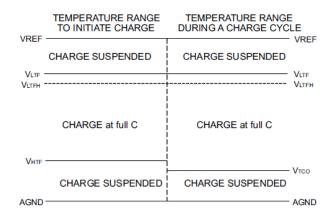
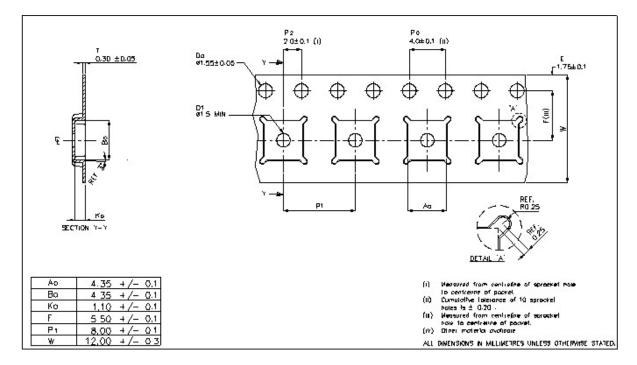
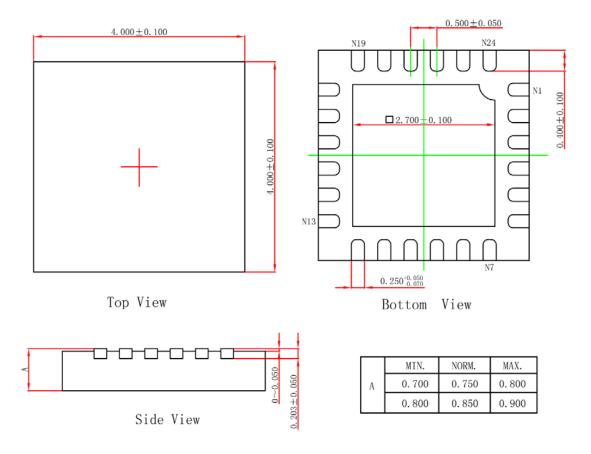


Figure3. TS Pin, Thermistor Sense Threshold

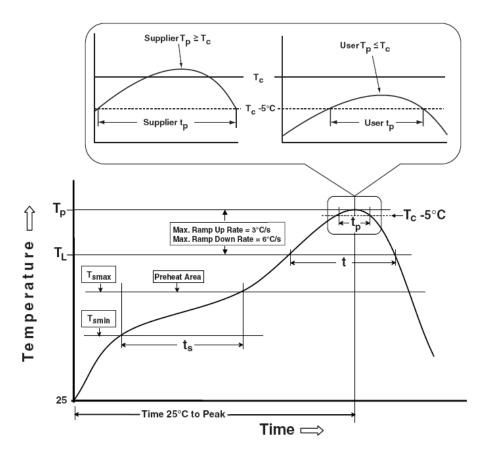
Assuming a NTC thermistor on the battery pack have resistance at 0° C and 45° C are RTH_{COLD} and RTH_{HOT}, the values of RT1 and RT2 can be determined by using below equations.


$$RT2 = \frac{V_{REF} \times RTH_{COLD} \times RTH_{HOT} \times (\frac{1}{V_{LTF}} - \frac{1}{V_{TCO}})}{RTH_{HOT} \times (\frac{V_{REF}}{V_{TCO}} - 1) - RTH_{COLD} \times (\frac{V_{REF}}{V_{LTF}} - 1)}$$

$$RT1 = \frac{\frac{V_{REF}}{V_{LTF}} - 1}{\frac{1}{RT2} + \frac{1}{RTH_{COLD}}}$$


Tape and Reel Information

Package Information



Classification Reflow Profiles

Profile Feature	Pb-Free Assembly
Preheat & Soak Temperature min (Tsmin) Temperature	150°C
Max (Tsmax)	200°C
Time (Tsmin to Tsmax) (ts)	60-120 seconds
Average ramp-up rate (Tsmax to Tp)	3°C/second max.
Liquidous temperature (TL)	217°C
Time at liquidous (tL)	60-150 seconds
Peak package body temperature (Tp)*	Max 260°C
Time (tp)** within 5°C of the specified classification temperature (Tc)	
	Max 30 seconds
Average ramp-down rate (Tp to Tsmax)	6°C/second max.
Time 25°C to peak temperature	8 minutes max.

Classification Profile

CAUTION

Storage Conditions

1) This product should be used within 12 months after delivered. Store in manufacturer's package keeping the seal of aluminum coated baggage or tightly re-closed box with the following conditions. [Temperature:8°C...30°C,Humidity:30%...70% R.H.]

2) Keep the seal of aluminum coated baggage immediately before usage.

3) After breaking the seal of aluminum coated baggage, this product should be used within 1 week on the following conditions.

[Temperature:≤30°C, Humidity: ≤60% R.H.]

VAS5183