



# **One-Chip Solution Power Bank PMIC**

## **General Description**

The VAS5180 is optimized for power bank application; it is a single chip solution PMIC with fully covers charger, boost converter, fuel gauge, torch light and output short protection functions. A high efficiency SW charger offers max. 2.5A charger current with adjustable cell voltage and safety timer, it also integrated both input current limit and input voltage regulation to manage max input power without DC source crash. A boost converter support 5V/2A output and designed to allow true output disconnect, the automatic load-in enable and load remove disable provide convenience of use. The VAS5180 integrate all power switches, minimizes external components, simplify application, require no MCU and share one inductor for both charger and boost mode, all of these make it is the most BOM efficient compare with present power bank solutions.

## Features(Charger)

- Integrated power MOSFETs
- 20V input rating (surge protection)
- Real ONE chip solution, no MCU required
- Programmable up to 2.5A charge current(set by ext. RISET resistor)
- Up to 94% efficiency
- Programmable output voltage (4.20V to 4.4V) with ±1% accuracy
- Automatically reduce charge current when supplied by poor power source (VIN-DPM)
- Does not required reverse blocking diode or MOS
- No sense resistor required
- Integrated fuel gauge and capacity indicator
- Fault indicator
- $\pm 10\%$  charge current accuracy
- 1.5MHz operating frequency to minimize external components size
- Protections:
  - VIN 6.7V OVP protection (stop switching)
  - Programmable safety timer(3~20 hours)
  - Thermal regulation / OTP shutdown
  - Cell temperature qualification
- Disconnect USB-A port when charging

#### **Applications**

• Power Bank for Tablet, Mobile Phone and MID

#### Features(Boost)

- Low standby current < 30uA
- Share charger inductor (2.2 or 3.3uH)
- Capable of outputting 5V/2.2A with 3.1V battery
- Up to 90% efficiency
- 3.15V low battery automatic off
- 2.9V under-voltage lockout
- 1.5MHz operating frequency
- Adjustable output voltage form  $5.0 \sim 5.4$  W with  $\pm 1.5\%$  accuracy
- Internal compensation and soft start
- Fast transient response with a 10uF MLCC and one 100uF electrolytic or Tantalum capacitor
- Integrate torch light driver (50mA)
- Integrate battery fuel gauge and LED indication
- Automatically shut down when no load
- Automatically enable if load detected
- Multi-protections:
  - Cycle-by-cycle 6A current limit
  - OTP shutdown
  - 2.5A max. Iout clamp
  - Output over-load /short protection. (disconnect USB-A port, no protector IC required)
  - Disconnect Micro-USB port when dis-charging
- TQFN4x4-24 and TSSOP-24 (EP) package





## **Typical Application Circuits**

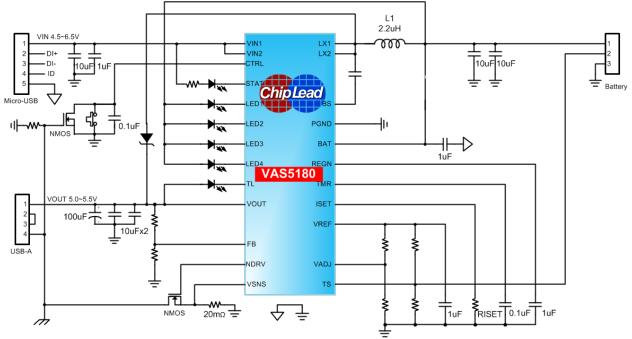



Figure 1. Typical Application Schematic





# Function Block Diagram

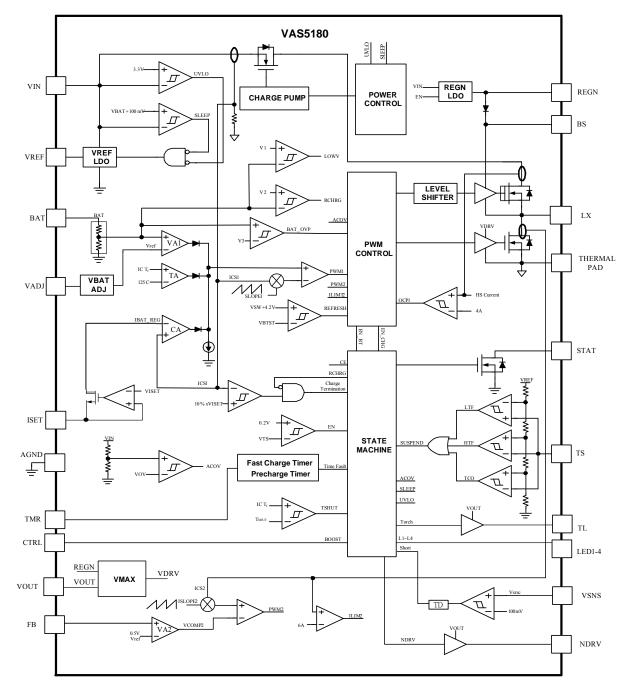
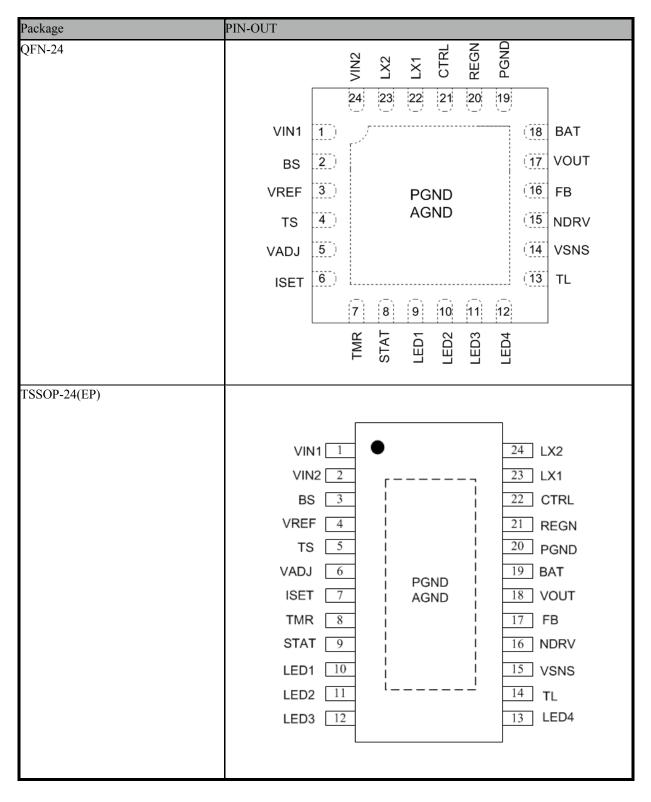



Figure 2. Function Block Diagram




400-833-7266 0755-82542116

原厂授权 中国代理

照明与



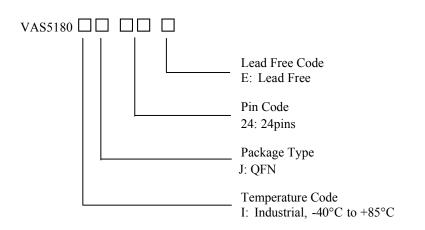
## **PIN Configuration**







# **PIN Description**


| TQFN<br>PIN NO. | TSSOP<br>PIN NO. | Name   | Description                                                                                         |                                                                                                                                               |                                   |  |  |
|-----------------|------------------|--------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|--|--|
| 1, 24           | 1,2              | VIN    | IC power supply of pow                                                                              | er device of Charger. Put 22u                                                                                                                 | F MLCC from VIN to PGND.          |  |  |
| 2               | 3                | BS     | Boostrap pin. Place a 0.                                                                            | 047u-F MLCC from LX to BS                                                                                                                     | 8                                 |  |  |
| 3               | 4                | VREF   | 3.3V reference output. A                                                                            | A 1uF MLCC is placed from V                                                                                                                   | VREF to GND to make it stable.    |  |  |
| 4               | 5                | TS     | NTC resistor connection                                                                             | . Cell temperature qualification                                                                                                              | on input pin.                     |  |  |
| 5               | 6                | VADJ   | Set VADJ voltage betwe                                                                              | een 0V~VREF to adjust charg                                                                                                                   | ge regulation voltage (4.2~4.4V). |  |  |
| 6               | 7                | ISET   | Fast charge current set p                                                                           | in.                                                                                                                                           |                                   |  |  |
| 7               | 8                | TMR    | Connect a capacitor from (5.6min/1nF)                                                               | Connect a capacitor from this node to AGND to set the fast charge safety timer.                                                               |                                   |  |  |
| 8               | 9                | STAT   | Open drain output                                                                                   |                                                                                                                                               |                                   |  |  |
|                 |                  |        | Hi-Z                                                                                                | Low                                                                                                                                           | Blinking                          |  |  |
|                 |                  |        | Charge complete or<br>Sleep mode                                                                    | Charging in progress                                                                                                                          | Fault                             |  |  |
| 9,10, 11,12     | 10,11,<br>12,13  | LED1-4 | LED indicator for repor                                                                             | t battery capacitance.                                                                                                                        |                                   |  |  |
| 13              | 14               | TL     | 50mA Torchlight LED                                                                                 | lriver output.                                                                                                                                |                                   |  |  |
| 14              | 15               | VSNS   | USB-A port ground pat                                                                               | n (low side) current sense inpu                                                                                                               | ut.                               |  |  |
| 15              | 16               | NDRV   |                                                                                                     | N-ch MOSFET gate driver output. NDRV turn N-ch MOSFET off when VSNS detect over-current and auto-recovery turn on once short circuit removed. |                                   |  |  |
| 16              | 17               | FB     |                                                                                                     | Boost output voltage feedback adjustment. Connect the output of a resistor divider powered from the boost output VOUT to FB to AGND.          |                                   |  |  |
| 17              | 18               | VOUT   | Async. Boost output. A 10uF MLCC and one 100uF electrolytic capacitor are placed from VOUT to PGND. |                                                                                                                                               |                                   |  |  |
| 18              | 19               | BAT    | Charger voltage regulation sense input.                                                             |                                                                                                                                               |                                   |  |  |
| 19              | 20               | PGND   | Power ground.                                                                                       |                                                                                                                                               |                                   |  |  |
| 20              | 21               | REGN   | 5V power supply output, Bypass 1u-F MLCC to AGND.                                                   |                                                                                                                                               |                                   |  |  |
| 21              | 22               | CTRL   | Boost mode enable and battery capacitance report control input.                                     |                                                                                                                                               |                                   |  |  |
| 22, 23          | 23,24            | LX     | Switching node, charge capacitor from LX to B                                                       | current output inductor conne<br>S.                                                                                                           | ection. Connect a 47-nF BS        |  |  |





### **Order Information**

| Order Number | Package Type | QTY/Reel | Green Status | Operation temp range |
|--------------|--------------|----------|--------------|----------------------|
| VAS5180IJ24E | QFN24        | 2500     | RoHS         | -40 °C to 85°C       |



400-833-7266 0755-82542116

原厂授权 中国代理

# Absolute Maximum Ratings

| Parameters                                                                      | Maximum Ratings |  |  |
|---------------------------------------------------------------------------------|-----------------|--|--|
| VIN, BS, STAT                                                                   | -0.3V to 20V    |  |  |
| LX                                                                              | -2V to 7V       |  |  |
| REGN, TMR, VOUT, BAT, CTRL, LED1, LED2,<br>LED3, LED4, TL, FB, NDRV, VSNS, ISET | -0.3V to 7V     |  |  |
| VREF, VADJ, TS                                                                  | -0.3V to 3.6V   |  |  |
| PGND                                                                            | -0.3V to +0.3V  |  |  |
| Junction temperature range                                                      | -40°C to +150°C |  |  |
| Storage temperature range                                                       | -65°C to +150°C |  |  |
| Lead Temperature                                                                | 260°C           |  |  |
| Maximum Power Dissipation                                                       | 2W              |  |  |
| ESD (HBM)                                                                       | 2000V           |  |  |





Value Added Solutions VAS5180 Preliminary

## **Electrical Characteristics**

| PARAMETERS            |                                                                                                     | TEST CONDITIONS                                                                                                 | MIN  | ТҮР             | MAX  | UNITS    |
|-----------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------|-----------------|------|----------|
| OPERATING             | CONDITIONS                                                                                          |                                                                                                                 |      |                 |      |          |
| $V_{VIN\_OP}$         | VIN input voltage<br>operating range<br>during charging.                                            |                                                                                                                 | 4.5  |                 | 6    | V        |
| QUIESCENT             | CURRENT                                                                                             |                                                                                                                 |      |                 |      |          |
| I <sub>IN</sub>       | Adapter supply<br>current                                                                           | VIN=5V                                                                                                          |      | 1.5             | 2    | mA       |
| $I_{BAT}$             | Battery discharge current                                                                           | VBAT=4.2V, standby mode                                                                                         |      | 15              | 30   | μΑ       |
| CHARGE VO             | LTAGE REGULATIO                                                                                     | N                                                                                                               |      | 1               |      | Γ        |
| $V_{BAT\_REG}$        | BAT regulation<br>voltage                                                                           | Measured on BAT                                                                                                 |      | 4.2             |      | V        |
|                       | Charge voltage<br>regulation accuracy                                                               | $TJ = -20^{\circ}C$ to $85^{\circ}C$                                                                            | -1%  |                 | 1%   |          |
| $V_{VADJ}$            | VADJ voltage range                                                                                  |                                                                                                                 | 0    |                 | VREF | V        |
|                       | Regulation voltage                                                                                  | VADJ=0V,                                                                                                        |      | 4.2             |      | V        |
| $V_{BAT\_ADJ}$        | Adjustment                                                                                          | VADJ=1/2*VREF                                                                                                   |      | 4.3             |      | V        |
|                       |                                                                                                     | VADJ=VREF                                                                                                       |      | 4.41            |      | V        |
| CURRENT R             | Fast charge current                                                                                 | Programmable<br>Mode(Max)                                                                                       |      | 2.0             | 2.5  | А        |
| V <sub>ISET</sub>     | Fast charge current reference voltage                                                               |                                                                                                                 |      | 1.0             |      | V        |
|                       | Output "fast charge"<br>formula                                                                     | $V_{BAT_{REG}} > V_{BAT} >$<br>$V_{LOWV}$ ; ISET2=FLOAT<br>RISET = 30k $\Omega$ to 200k $\Omega$                |      | KISET/<br>RISET |      | А        |
| K <sub>ISET</sub>     | Fast charge current factor                                                                          | $RISET = K_{ISET} / IOUT;$<br>500 <iout< 2500ma<="" td=""><td>75</td><td>80</td><td>85</td><td>AkΩ</td></iout<> | 75   | 80              | 85   | AkΩ      |
| CURRENT R             | EGULATION -PRE- C                                                                                   | CHARGE                                                                                                          |      |                 |      |          |
| %PRECHG               | Pre-charge current,<br>default setting                                                              | $V_{BAT} < V_{LOWV}$                                                                                            |      | 10              |      | %IOUT-CC |
| CHARGE TE             | RMINATION                                                                                           | 1                                                                                                               |      |                 |      |          |
| % <sub>TERM</sub>     | Termination<br>threshold current,<br>default setting                                                | $V_{BAT} > V_{RECHG}$                                                                                           | 5    | 10              | 15   | %IOUT-CC |
| t <sub>term_deg</sub> | Deglitch time<br>termination (both<br>edges)                                                        | $V_{BAT}$ $>$ $V_{RECHG}$ and $I_{CHG}$ $<$ $I_{TERM}$                                                          |      | 100             |      | ms       |
| BAT LOWV              | COMPARATOR                                                                                          | ·                                                                                                               |      |                 | •    |          |
| $V_{\text{LOWV}}$     | Precharge to fast<br>charge transition<br>threshold                                                 | Measured on BAT                                                                                                 | 2.85 | 2.9             | 2.95 | V        |
| RECHARGE              | COMPARATOR                                                                                          |                                                                                                                 |      |                 |      |          |
| V <sub>RECHG</sub>    | Recharge threshold,<br>below regulation<br>voltage limit,<br>V <sub>BAT REG</sub> -V <sub>BAT</sub> | Measured on BAT                                                                                                 | 70   | 100             | 130  | mV       |







| PAR                         | AMETERS                                                                | TEST CONDITIONS                                             | MIN  | ТҮР  | MAX  | UNITS |
|-----------------------------|------------------------------------------------------------------------|-------------------------------------------------------------|------|------|------|-------|
| BAT OVER-V                  | OLTAGE COMPARA                                                         | TOR                                                         |      |      |      |       |
| V <sub>OV_RISE</sub>        | Battery over-voltage rising threshold                                  | As percentage of $V_{BAT\_REG}$                             |      | 110  |      | %     |
| $V_{OV\_FALL}$              | Battery over-voltage falling threshold                                 | As percentage of $V_{BAT\_REG}$                             |      | 105  |      | %     |
| <b>INPUT OVER</b>           | -VOLTAGE COMPAI                                                        | RATOR (ACOV)                                                |      |      |      |       |
| V <sub>ACOV</sub>           | AC over-voltage<br>rising threshold to<br>disable charge               | VIN rising                                                  | 6.4  | 6.6  | 6.8  | V     |
| $V_{ACOV\_HYS}$             | AC over-voltage falling hysteresis                                     | VIN falling                                                 |      | 300  |      | mV    |
| Input Under-V               | oltage Lock-Out Com                                                    | parator (UVLO)                                              |      | 1    |      |       |
| V <sub>UVLO</sub>           | AC under-voltage rising                                                | Measure on VIN                                              |      | 3.3  |      | V     |
| $V_{\rm UVLO-HSY}$          | AC under-voltage hysteresis                                            | Measure on VIN                                              |      | 300  |      | mV    |
| THERMAL R                   |                                                                        |                                                             |      |      |      |       |
| $T_{J\_REG}$                | Junction<br>temperature<br>regulation                                  | Charging                                                    |      | 125  |      | °C    |
| THERMAL SI                  | HUTDOWN COMPAR                                                         | ATOR                                                        |      |      |      |       |
| T <sub>SHUT</sub>           | Thermal shutdown temperature                                           | Temperature rising                                          |      | 155  |      | °C    |
| THERMISTO                   | RCOMPARATOR                                                            |                                                             |      | 1    | 1    | [     |
| V <sub>LTF</sub>            | Cold temperature<br>threshold, TS pin<br>voltage rising<br>threshold   | Charger suspends charge. As percentage to $V_{\text{VREF}}$ | 72.5 | 73.5 | 74.5 | %     |
| $V_{LTF_HYS}$               | Cold temperature<br>hysteresis, TS pin<br>voltage falling<br>threshold | As percentage to $V_{\text{VREF}}$                          | 0.2  | 0.4  | 0.6  | %     |
| $\mathbf{V}_{\mathrm{HTF}}$ | Hot temperature TS<br>pin voltage falling<br>threshold                 | As percentage to $V_{VREF}$                                 | 46.6 | 47.2 | 48.8 | %     |
| V <sub>TCO</sub>            | Cut-off temperature<br>TS pin voltage<br>falling threshold             | As percentage to $V_{VREF}$                                 | 44.2 | 44.7 | 45.2 | %     |
| VREF REGUI                  |                                                                        | 1                                                           |      | 1    | 1    |       |
| V <sub>VREF</sub>           | REF regulator<br>voltage                                               | $V_{VIN} > V_{UVLO}$ , No load                              | 3.15 | 3.3  | 3.45 | V     |
| I <sub>VREF_LIM</sub>       | REF current limit                                                      | $V_{VREF} = 0 V, V_{VIN} > V_{UVLO}$                        |      | 40   |      | mA    |
| REGN REGU                   |                                                                        |                                                             |      | 1    | 1    |       |
| $V_{REGN\_REG}$             | REGN regulator<br>voltage                                              | $V_{\rm VIN} > 10 \ V$                                      | 4.3  | 4.6  | 4.9  | V     |
| I <sub>REGN_LIM</sub>       | REGN current limit                                                     | $V_{REGN} = 0 V, V_{VIN} > 10V$                             |      | 50   |      | mA    |
| INTERNAL P                  |                                                                        |                                                             |      |      | 1    |       |
| Fsw_chg                     | PWM Switching<br>Frequency                                             | Measure at LX                                               | 1200 | 1400 | 1600 | kHz   |







| PAR                            | AMETERS                                    | TEST CONDITIONS                                                       | MIN          | ТҮР  | MAX  | UNITS  |
|--------------------------------|--------------------------------------------|-----------------------------------------------------------------------|--------------|------|------|--------|
| R <sub>DS_HI</sub>             | High Side MOSFET<br>On Resistance          |                                                                       |              | 80   | 120  | mΩ     |
| $R_{DS\_LO}$                   | Low Side MOSFET<br>On Resistance           |                                                                       |              | 40   | 60   | mΩ     |
| $R_{DS\_BD}$                   | Block MOSFET On<br>Resistance              |                                                                       |              | 50   | 70   | mΩ     |
| SAFETY TIM                     |                                            |                                                                       |              |      |      | _      |
| T <sub>PRE-CHARGE</sub>        | Pre-charge timer                           |                                                                       | 1848         | 2100 | 2352 | Sec    |
| T <sub>FAST-CHARGE</sub>       | Fast-charge timer                          | $T_{CHG} = C_{TMR} * K_{TMR}$                                         | 1            |      | 15   | hr     |
| K <sub>TMR</sub>               | Timer Multiplier                           |                                                                       |              | 5.6  |      | min/nF |
| DC/DC STAG                     | E                                          |                                                                       |              |      | T    |        |
| $V_{I}$                        | Input voltage range                        | VBAT input voltage                                                    | 3.0          |      | 4.5  | V      |
| $\mathbf{V}_{\mathrm{OUT}}$    | Output voltage range                       |                                                                       | 4.5          |      | 5.5  | V      |
| $V_{FB}$                       | Feedback voltage                           |                                                                       | 980          | 1000 | 1020 | mV     |
| $\mathbf{f}_{SW}$              | Oscillator frequency                       |                                                                       | 1200         |      | 1600 | kHz    |
| I <sub>SW_LIM</sub>            | Switch current limit                       | VOUT= 5 V                                                             | 5000         | 5500 | 6000 | mA     |
| $R_{SW\_ON}$                   | Switch on resistance                       | VOUT= 5 V                                                             |              | 30   | 50   | mΩ     |
| $\mathbf{I}_{\mathrm{STDBY}}$  | Standby current                            | VBAT = 4.2 V, Boost off                                               |              | 15   | 30   | μA     |
| CONTROL ST                     |                                            |                                                                       |              |      |      |        |
| V <sub>BATUVLO</sub>           | Under voltage<br>lockout threshold         | VBAT voltage decreasing                                               |              | 2.9  |      | V      |
| V <sub>BATLOW</sub>            | Battery low to boost<br>enter standby mode | VBAT voltage decreasing                                               | 3.05         | 3.1  | 3.15 | V      |
| $T_{\text{LOW}\_\text{FLASH}}$ | Battery low, LED1<br>flash period          | VBAT <v<sub>BATLOW, LED1<br/>start flash to LED1 turn<br/>off</v<sub> | 4            | 6    | 8    | Sec    |
| $F_{\text{LOW}\_\text{FLASH}}$ | Battery low, LED1<br>flash frequency       | VBAT <v<sub>BATLOW, LED1<br/>start flash frequency</v<sub>            | 1.2          | 1.4  | 1.6  | Hz     |
| $\mathbf{V}_{\mathrm{SNS}}$    | Overload detection threshold               | Measure VSNS to GND                                                   | 90           | 100  | 110  | mV     |
| $t_{VSNS\_DEG}$                | VSNS detection deglitch time               | VSNS> 100mV to NDRV<br>turn off                                       |              | 20   |      | μS     |
| $V_{\text{NDRV}_{OL}}$         | NDRV output low voltage                    |                                                                       |              |      | 0.1  | V      |
| $V_{NDRV_{HI}}$                | voltage<br>NDRV output high<br>voltage     |                                                                       | VOUT<br>-0.1 |      |      | V      |
| $V_{IL}$                       | CTRL logic low<br>threshold                |                                                                       | 0.4          |      |      | V      |
| $V_{\mathrm{IH}}$              | CTRL logic high<br>threshold               |                                                                       |              |      | 1.4  | V      |
| t <sub>CTRL_DEG</sub>          | CTRL logic low<br>deglitch time            |                                                                       |              | 100  |      | μS     |
| $V_{\text{LED_OL}}$            | LEDs output low<br>voltage                 | LEDs sink 1mA                                                         |              |      | 1    | V      |





# Value Added Solutions VAS5180 Preliminary

| PAR                    | AMETERS                                                                              | TEST CONDITIONS                       | MIN | ТҮР | MAX | UNITS |
|------------------------|--------------------------------------------------------------------------------------|---------------------------------------|-----|-----|-----|-------|
| F <sub>led_chg</sub>   | LEDs wave<br>frequency at charge<br>mode                                             | LED N-1 to N switch frequency         | 1.2 | 1.4 | 1.6 | Hz    |
| T <sub>LED_HOLD</sub>  | Gauge on hold time<br>at boost mode                                                  | CTRL goes low, LEDs on to LEDs off    | 4   | 6   | 8   | Sec   |
| T <sub>MANUALOFF</sub> | CTRL cont. low to<br>boost enter standby<br>mode deglitch                            | CTRL goes cont. low to boost turn off | 4   | 6   | 8   | Sec   |
| T <sub>TL_EN</sub>     | Effective interval<br>for two CTRL low<br>pulses to enable or<br>disable torch light |                                       | 1.2 | 1.7 | 2   | Sec   |
| I <sub>TL_LIM</sub>    | TL sink current<br>limit                                                             | Torch light on, VTL =2V               |     | 50  |     | mA    |
| T <sub>LEDOFF</sub>    | No load to LEDs off delay                                                            | No load to gauge LEDs turn off        | 4   | 6   | 8   | Sec   |
| T <sub>NOLOADOFF</sub> | No load to Boost off delay                                                           | No load to Boost turn off             | 1.5 | 1.8 | 2   | min   |

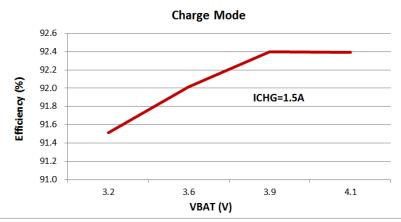



Figure 3. VIN=5.0V, 1.5A Charge Efficiency vs. VBAT

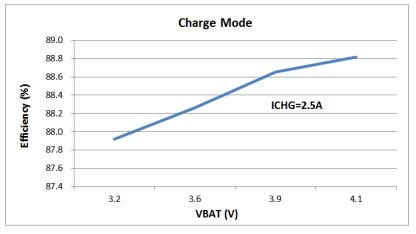



Figure 4. VIN=5.0V, 2.5A Charge Efficiency vs. VBAT







Figure 5. VOUT=5.0V, VBAT=4.0V, Boost Efficiency vs. IOUT

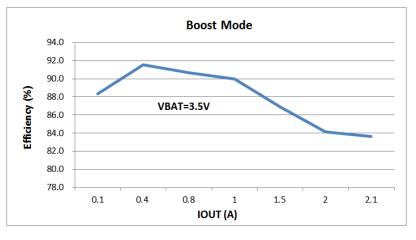



Figure 6. VOUT=5.0V, VBAT=3.5V, Boost Efficiency vs. IOUT

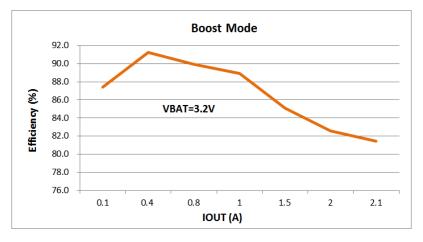



Figure 7. VOUT=5.0V, VBAT=3.2V, Boost Efficiency vs. IOUT





# **Operation State Diagram**

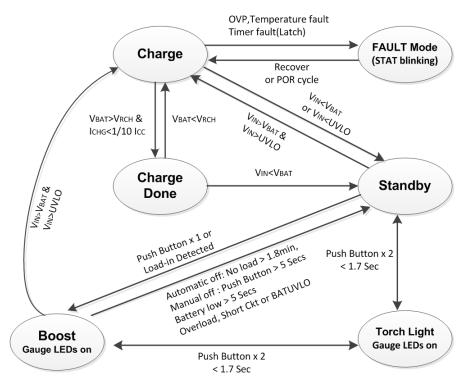



Figure 8. State Diagram

| Mode    | VBAT                                                                                              | LED1                     | LED2 | LED3 | LED4 | STAT |
|---------|---------------------------------------------------------------------------------------------------|--------------------------|------|------|------|------|
|         | BAT<3.7V                                                                                          | WAVE                     | WAVE | WAVE | WAVE | ON   |
|         | 3.7V <bat<3.85v< td=""><td>ON</td><td>WAVE</td><td>WAVE</td><td>WAVE</td><td>ON</td></bat<3.85v<> | ON                       | WAVE | WAVE | WAVE | ON   |
| CHARGE  | 3.85V <bat<4.15v< td=""><td>ON</td><td>ON</td><td>WAVE</td><td>WAVE</td><td>ON</td></bat<4.15v<>  | ON                       | ON   | WAVE | WAVE | ON   |
|         | 4.15V <bat< td=""><td>ON</td><td>ON</td><td>ON</td><td>WAVE</td><td>ON</td></bat<>                | ON                       | ON   | ON   | WAVE | ON   |
|         | Termination                                                                                       | ON                       | ON   | ON   | ON   | OFF  |
|         | BAT< 3.15V                                                                                        | Blink 6 secs<br>then OFF | OFF  | OFF  | OFF  | OFF  |
|         | 3.15V <bat<3.55v< td=""><td>ON</td><td>OFF</td><td>OFF</td><td>OFF</td><td>OFF</td></bat<3.55v<>  | ON                       | OFF  | OFF  | OFF  | OFF  |
| BOOST   | 3.55V <bat<3.76v< td=""><td>ON</td><td>ON</td><td>OFF</td><td>OFF</td><td>OFF</td></bat<3.76v<>   | ON                       | ON   | OFF  | OFF  | OFF  |
|         | 3.76V <bat<4.02v< td=""><td>ON</td><td>ON</td><td>ON</td><td>OFF</td><td>OFF</td></bat<4.02v<>    | ON                       | ON   | ON   | OFF  | OFF  |
|         | 4.02V< BAT                                                                                        | ON                       | ON   | ON   | ON   | OFF  |
| STANDBY |                                                                                                   | OFF                      | OFF  | OFF  | OFF  | OFF  |

#### Gauge Light Indication





## **CTRL** Control

| Mode                                                                                                                | Function | One pulse                                     | Double<br>pulse<br><1.7sec | One more<br>pulse during<br>Torch ON | Pulse> 5Sec<br>during<br>Boost ON |  |  |
|---------------------------------------------------------------------------------------------------------------------|----------|-----------------------------------------------|----------------------------|--------------------------------------|-----------------------------------|--|--|
|                                                                                                                     | F        |                                               |                            |                                      |                                   |  |  |
| CHARGE                                                                                                              | GAUGE    |                                               | ON                         | 1                                    |                                   |  |  |
| 0                                                                                                                   | TORCH    |                                               | OFF                        |                                      |                                   |  |  |
|                                                                                                                     | NDRV ON  |                                               | OFF                        |                                      |                                   |  |  |
|                                                                                                                     | BOOST    | ON<br>Keep 1.8mins ON<br>then OFF (no load)   | ON                         | ON                                   | OFF                               |  |  |
| BOOST<br>VBAT>2.9V                                                                                                  | GAUGE    | ON(load)<br>Keep 6sec ON<br>then OFF(no load) | ON<br>(Torch EN)           | ON<br>(Torch OFF)                    | OFF                               |  |  |
| VIN <vbat< th=""><th>TORCH</th><th>OFF</th><th>ON or OFF</th><th>Delay 1.7sec<br/>then OFF</th><th>OFF</th></vbat<> | TORCH    | OFF                                           | ON or OFF                  | Delay 1.7sec<br>then OFF             | OFF                               |  |  |
|                                                                                                                     | NDRV ON  | ON                                            | ON                         | ON                                   | OFF                               |  |  |

400-833-7266 0755-82542116

原厂授权 中国代理

照明

- 1. CTRL key has no function during charging mode, the boost converter is off and the load (USB-A) is disconnected from battery power.
- 2. In standby mode, click the CTRL button can start the BOOST and battery power indicator, such as the no-load input, the power indicator off after 6 seconds, BOOST to turn off automatically after 1.8 minutes.
- 3. If battery voltage is between 2.9V ~ 3.15V, click the button, battery indicator LED1 flashes and go back to standby mode after 6 seconds.
- 4. If battery voltage is lower than 2.9V, click the button will not weak BOOST up, the power bank keep stay at the standby mode.
- 5. Double-click the button to turn on or off the flashlight, and power display always on when flashlight function is activated, in this mode, click the button again, flashlight off automatically after 1.7 seconds delay.
- 6. In boost mode, press button 5 seconds, you can manually turn off BOOST, and disconnect the load circuit.





## **Application Information**

- Charge Management
- 1. Typical Operation Theory

The charger of VAS5180 is optimized for charging 1-cell Li-ion or Li-polymer batteries. It charges a battery with constant current (CC) and constant voltage (CV) profile. In CV mode, if charge current reaches 1/10 constant current threshold, fuel gauge 4 LEDs are turned on. The typical charge profile is illustrated as below.

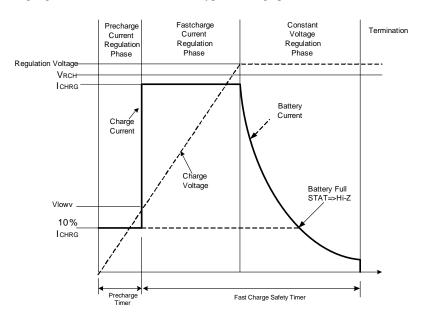



Figure 9. Typical Charging Profile

#### 2. Battery Voltage Regulation

The VAS5180 offers a high accuracy voltage regulator for the charging voltage. Battery regulation voltage could be adjusted by setting VADJ voltage and the equation for the adjustment is:

$$V_{BAT\_REG} = \left[ \left( \frac{V_{ADJ}}{V_{REF} \cdot 20} + 1 \right) \times 4.2 \right]$$

3. Battery Current Regulation

The ISET input sets the maximum charging current. The equation for charge current is:

$$I_{CHG} = \frac{1}{R_{ISET}} \times 80K$$

Give a  $40k\Omega$  RISET to set 2A charge current, for instance. Under high ambient temperature, the charge current will fold back to keep IC temperature not exceeding  $125^{\circ}$ C.



4. Battery Pre-charge Current Regulation

If the battery voltage is below the VLOWV threshold, the VAS5180 applies the pre-charge current to the battery. This pre-charge feature is intended to revive deeply discharged cells. If the VLOWV threshold is not reached within 30 minutes of initiating pre-charge, the charger turns off and a FAULT is indicated on the status pins.

For VAS5180, the pre-charge current is set as 10% of the fast charge rate.

5. Input Over Voltage Protection

Input OVP provides protection to prevent device damage due to high input voltage. The threshold of input OVP is 6.7V typ., once input above threshold, the charger is disabled and STAT indicated FAULT.

6. Input Voltage Regulation

The input voltage can be limited in order to avoid overloading of DC adapter or USB power source, when the voltage on VIN pin drops and hits the threshold voltage of 4.7V, the charging current will be decreased and input voltage will be clamped to this value.

7. Charge Termination

The charger monitors the charging current during the voltage regulation phase. Termination is detected when the charge taper down to 1/10 of the fast charge rate.

8. Re-Charge

A new charge cycle is initiated when one of the following conditions occurs:

- The battery voltage falls below the recharge threshold
- A power-on-reset (POR) event occurs
- 9. Safety Timers

As a safety backup, the charger also provides an internal fixed 35 minutes pre-charge safety timer and programmable fast charge timer according to the capacitor value which connected to TMR pin.

10. Soft-Start Charger Current

The charger automatically soft-starts the charger regulation current every time the charger goes into fast-charge to ensure there is no overshoot or stress on the output capacitors or the power converter.

11. Temperature Qualification

The controller continuously monitors battery temperature by measuring the voltage between the TS pin and AGND. A negative temperature coefficient thermistor (NTC) and an external voltage divider typically develop this voltage. The controller compares this voltage against its internal thresholds to determine if charging is allowed. To initiate a charge cycle, the battery temperature must be within the VLTF to VHTF thresholds. If battery temperature is outside of this range, the controller suspends charge and waits until the battery temperature is within the VLTF to VHTF range. During the charge cycle the battery temperature must be within the VLTF to VTCO thresholds. If battery



temperature is outside of this range, the controller suspends charge and waits until the battery temperature is within the VLTF to VHTF range. The controller suspends charge by turning off the PWM charge MOSFETs.

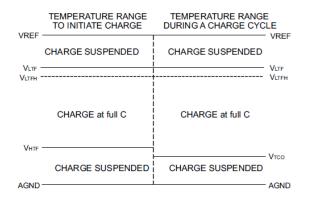



Figure 10. TS Pin, Thermistor Sense Threshold

Assuming a NTC thermistor on the battery pack have resistance at  $0^{\circ}$ C and  $45^{\circ}$ C are RTH<sub>COLD</sub> and RTH<sub>HOT</sub>, the values of RT1 and RT2 can be determined by using below equations.

$$RT2 = \frac{V_{REF} \times RTH_{COLD} \times RTH_{HOT} \times (\frac{1}{V_{LTF}} - \frac{1}{V_{TCO}})}{RTH_{HOT} \times (\frac{V_{REF}}{V_{TCO}} - 1) - RTH_{COLD} \times (\frac{V_{REF}}{V_{LTF}} - 1)}$$

$$RT1 = \frac{\frac{V_{REF}}{V_{LTF}} - 1}{\frac{1}{RT2} + \frac{1}{RTH_{COLD}}}$$

Boost Converter

#### 1. Typical Operation Theory

The VAS5180 integrates a boost converter powered by a one-cell Li-Ion or Li-polymer battery. The converter generates a stable output voltage that is either adjusted by an external resistor divider. The typical value of the voltage on the FB pin is 1.0V. The maximum allowed value for the output voltage is 5.5 V. It provides high efficient power conversion and is capable of delivering output currents up to 2 A at 5 V at a supply voltage down to 2.9 V. The implemented boost converter is based on a fixed frequency, pulse-width- modulation (PWM) controller. The maximum peak current in the boost switch is limited to a value of 5.5A, an internal temperature sensor prevents the device from getting overheated in case of excessive power dissipation.

2. Soft Start



The boost automatically soft-starts the switching current to load to ensure there is no overshoot or inrush stress on the output capacitors, the boost switch current limit is set to 50% of its normal value to avoid high peak current at battery during soft-start period. When the output voltage is reached, the voltage regulator takes control and switch current limit is set back to 100%.

光之道 唯冠辰

400-833-7266 0755-82542116 Value Added Solutions

VAS5180 Preliminary

#### 3. Over-current and Short Protection

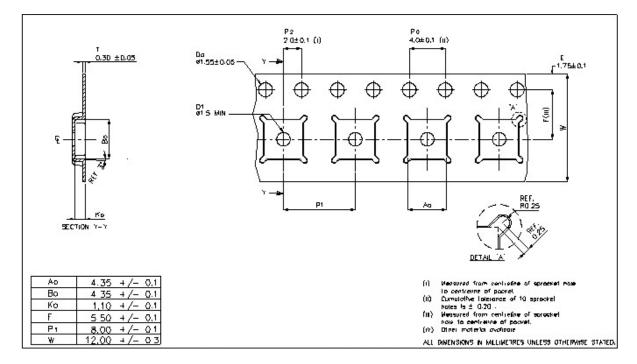
The peak current of the low switch is sensed to limit the maximum current flowing through the switch and the inductor. The typical cycle by cycle peak current limit is set to 5.5A. The NDRV is used to control an external NMOSFET to connect the output of converter to load (USB-A) or not and VSNS pin is used to monitors output current through a low-side sense resistor. The NDRV turn NMOS on if soft-start completed, and will turn NMOS off if boost output voltage fall below to battery voltage due to average overloading or short current detected at VSNS pin. As ext. NMOS is switched off, the load (USB-A) is isolated from boost output. The detection threshold of VSNS is set to 100mV with 20us deglitch.

#### 4. Automatic Load-in Detection

Design an external resistor connect USB-A ground to system ground, when a load is connected to USB-A port, the load and ext. resistor construct a resistor divider from VOUT to ground. If the resistance of load is small enough to pull divided voltage high and turn on NMOS, the CTRL could be pulled low to enable boost converter. For example, set ext. resistor to  $100k\Omega$ , and a load with less than  $200k\Omega$  resistance is connected, the divided voltage from a 3.0V VOUT can as high as 1.0V and be able to turn a NMOS on.

5. Light Load Automatic Shutdown

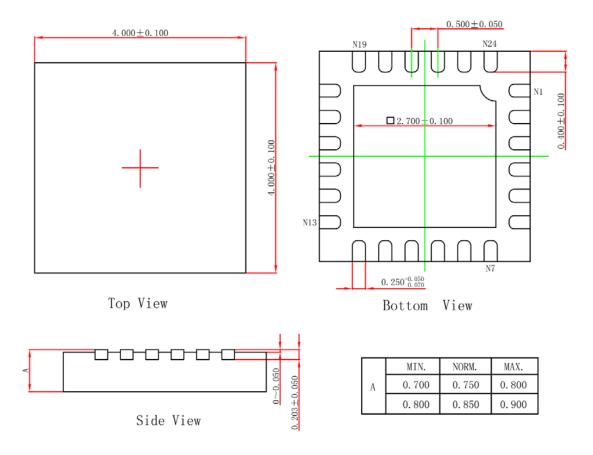
The boost converter detects average current to load, if average current fall below 20mA for 5sec., the fuel gauge LEDs are turning off and start 1.8min go standby timer. Once 1.8mins timer expired, and average current never go back above 20mA, then the boost enter automatic shutdown.


#### ◆ Fuel Gauge LEDs Indication

The VAS5180 integrated with four LED constant current drive ports for intelligent battery level indication, the chip built-in state lock function to prevent indicate the status of instability. See "Gauge Light Indication" table for detail fuel gauge level and LEDs behavior.






## Tape and Reel Information







# Package Information







# **Classification Reflow Profiles**

400-833-7266 0755-82542116

原厂授权 中国代理

| Profile Feature                                        | Pb-Free Assembly |
|--------------------------------------------------------|------------------|
| Preheat & Soak Temperature min (Tsmin) Temperature     | 150°C            |
| max (Tsmax)                                            | 200°C            |
| Time (Tsmin to Tsmax) (ts)                             |                  |
|                                                        | 60-120 seconds   |
| Average ramp-up rate (Tsmax to Tp)                     | 3°C/second max.  |
| Liquidous temperature (TL)                             | 217°C            |
|                                                        |                  |
| Time at liquidous (tL)                                 | 60-150 seconds   |
| Peak package body temperature (Tp)*                    | Max 260°C        |
| Time (tp)** within 5°C of the specified classification |                  |
| temperature (Tc)                                       |                  |
|                                                        | Max 30 seconds   |
| Average ramp-down rate (Tp to Tsmax)                   | 6°C/second max.  |
| Time 25°C to peak temperature                          | 8 minutes max.   |

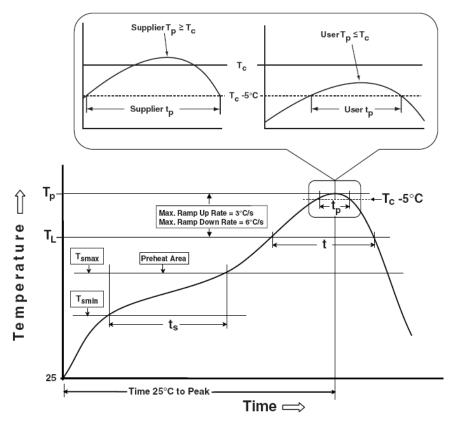



Figure 21. Classification Profile





## CAUTION

Storage Conditions

1) This product should be used within 12 months after delivered. Store in manufacturer's package keeping the seal of aluminum coated baggage or tightly re-closed box with the following conditions. [Temperature:8°C...30°C,Humidity:30%...70% R.H.]

2) Keep the seal of aluminum coated baggage immediately before usage.

3) After breaking the seal of aluminum coated baggage, this product should be used within 1 week on the following conditions. [Temperature: $\leq 30^{\circ}$ C, Humidity:  $\leq 60\%$  R.H.]